Dynamic Resource Management of Heterogeneous Mobile Platforms via Imitation Learning.

The complexity of heterogeneous mobile platforms is growing at a rate faster than our ability to manage them optimally at runtime. For example, state-of-the-art systems-on-chip (SoCs) enable controlling the type (Big/Little), number, and frequency of active cores. Managing these platforms becomes challenging with the increase in the type, number, and supported frequency levels of the cores. However, existing solutions used in mobile platforms still rely on simple heuristics based on the utilization of cores. This paper presents a novel and practical imitation learning (IL) framework for dynamically controlling the type (Big/Little), number, and the frequencies of active cores in heterogeneous mobile processors. We present efficient approaches for constructing an Oracle policy to optimize different objective functions, such as energy and performance per Watt (PPW). The Oracle policies enable us to […]

Dynamic Resource Management of Heterogeneous Mobile Platforms via Imitation Learning. Read More »