
Interrupt Skipping for Reducing Power

Consumption of User Input Handling

Chetan Arvind Patil
Electrical Engineering & Computer Science Department

Northwestern University

Evanston, Illinois, USA

chetanpatil@u.northwestern.edu

Gokhan Memik

Electrical Engineering & Computer Science Department

Northwestern University

Evanston, Illinois, USA

g-memik@northwestern.edu

Abstract — Touch based smart phones and tablets have

increased rapidly and have become primary mode of computing

and communication. Users have to perform various types of

touch inputs on these devices to interact with applications and

manufacturers are always looking to improve the response time

to satisfy users. However, performing touch gestures and making

it more responsive has significant effect both on device battery

and the microarchitecture. It is therefore important for computer

architects and system designers to take into consideration the

underlying effects of these touch gestures and user interactions at

architectural level. Also, it’s important to understand how

efficient the touch architecture in today’s smartphones are, and if

there is any possibility to improve their efficiency.

Therefore, there is a need to put forward ways to study these

effects, and this technical report takes a look at touch

interactions, their underlying architecture, and how our

proposed implemented system helps improve efficiency at the

system level. We call this new implementation, Interrupt Skipping.

Keywords— touch inputs; user interaction; android;

smartphones

I. Introduction
Touch based devices, mainly smart phones and tablets,

have seen rapid growth both in terms of use and technological
development. Android OS [1] is leading all the way as
preferred OS for mobile devices, with around billion
activations and 50 billion of application installs [2]. In terms
of hardware, ARM [3] is undoubtedly the leader in mobile
devices and OEM’s prefer to have ARM on the SoC’s they
built. Android is operated mainly using touch screen and this
requires heavy user interactions with the help of touch inputs.

This presents an opportunity and need to study the effects
of these interactions at system and hardware level. Same time,
it is also very important to understand the how much more
efficient these touch interactions can be. Even a few
percentage of drop in battery current drawn from such task,
which is mainly handle by drivers, can help improve
efficiency of future smartphones. Thus, it’s important to
understand how touch interaction occur at the software-
hardware level, and whether skipping these helps improve
power consumption while keeping the user satisfied.

Touch devices have become an integral part of day to day
life, and this has attracted research community’s attention, and

many groups have started looking into the details of how they
can minimize the delay associated with every single touch. So
far, most of them have concentrated on improving the
response time, without much looking into the efficiency [4]
[5]. Some of the study have also looked into the need of how
fast the touch interaction should be [6]. Most recently,
Alexander W. Min et al [7], came up with an adaptive touch
sampling for mobile platforms. However, all these study lacks
the real implementation, because they provide results based on
bare devices, which don’t run any operation system,
applications or even use a SoC.

Currently, to the best of our knowledge, there hasn’t been
any study that looked into how touch processing can be
handled in a very different manner, which in turn results in
better efficient touch system. Thus, there is a need to put
forward such implementation, and how that can make future
smartphones less touch power hungry.

In this report, we show how interrupt which occurs during
each touch interactions can be skipped without user perceiving
any difference. Our implementation uses Android OS (AOSP),
specifically we make use of CyanogenMod (CM) OS 11.0 [8]
which is equivalent of Android KitKat 4.4. The reason to opt
for a forked version of AOSP is due to the faster adoption both
by hobbyist and OEM’s. Also, since the underlying
architecture is built on top of Linux Kernel, it gives us the
same infrastructure to test with better build environment
compared to AOSP. To validate our model, we make use of a
widely popular Nexus 4 [9], and industry grade profiler Trepn
[10].

In summary, this report put forwards:

 We show how current touch input systems in
smartphones are power and CPU hungry.

 We developed, implemented, and tested a new
concept called Interrupt Skipping, which helps in
achieving better touch power efficiency.

 The rest of this report is organized as follows. Section II
describes the motivation to this research study on touch
interactions. Section III shows how current underlying
architecture works both at hardware and software level.
Section IV describes the system developed. Section V talks
about the experimental setups. Section VI shows the results
we get from out implemented system. In section VII we share

related work, and conclude with conclusion and future work in
section VIII and IX respectively.

II. Motivation
In this section, we describe the experiments we carried out

in order to get power, CPU frequency, CPU load related touch

interaction data. This in turn motivated us to look deeper into

the touch architecture, and helped us in deciding how touches

can be made more efficient.

A. The Setup:

The experiment setup for this uses swipe touches. To

understand the power consumption between no touch

interaction, heavy touch interaction, and low touch interaction,

we simulate emulated swipe script for total of 80 seconds with

Google Chrome Browser [11] loaded with a WiKi page. We

make use of an open native utility called Orangutan [12],

which allowed us to emulate near perfect touch events. We do

away with using Android inbuilt utility input [13] to emulate

same, due to the overhead it adds being written in Java. First 5

seconds, we don’t emulate anything, then for next 20 seconds

we emulate very fast 8 swipes per second touches. Again, we

put the system to do away with emulating touch events for 5

seconds, with next 20 seconds emulating low 1 swipe per

second before a 5 second delay, and then fast 8 swipes per

second for 20 seconds. Finally, ending with 5 second of no

interaction.

B. Power Hungry:

We carried out the explained setup to look into how

change in frequency of swipe touch during a period of time on
a Chrome Browser affects the battery current drawn.

Figure 1 shows the experimental set up for power analysis.
To capture the battery current drawn, as noted above we make
use of Trepn Profiler. Trepn being developed and distributed
by Qualcomm makes for a good profiler due to the SoC in
Nexus 4 is developed by Qualcomm only.

FIGURE 1: EMULATE SWIPES FOR POWER PROFILING

 The data gathered during the analysis is shown in Figure
2. The results we got were very motivating, it clearly shows

that with increase in touch interaction on an application in
focus, results in tremendous amount of battery current being
drawn. Since we make sure the screen brightness is lowest, all
other wireless communication are turned off, and the data we
got is near accurate. The 5 seconds of delay, where no touch
interaction is happening, helps in showing the real difference.

FIGURE 2: BATTERY CURRENT DRAWN FOR SWIPES

 On an average, we see the difference of about 5% in
battery current being drawn when there is no touch interaction,
and when there is. We also note that between fast swipes of 8
swipes per second, and slow swipes of 1 swipe per second,
there is around 2% of difference.

C. CPU Hungry:

To get more in depth understanding we also run the similar

experiment to see how CPU frequency and CPU Load is

affected with touch interactions. Nexus 4’s SoC is a quad core

one, and it honors core level voltage and frequency scaling.

We wanted to see how different core react to our emulated

touch swipes. For this experiment, we kept the CPU governor

to on demand, this helps in giving the best performance and

near accurate data. We again make use of same profiler we

used for power analysis. Figure 3 illustrates the set up.

FIGURE 3: EMULATE SWIPES FOR CPU PROFILING

Figure 4 and 5 tells the similar story as told by Figure 2,

i.e., touch interaction, specifically swipes affect CPU heavily,

and thus the fact that touch interaction do have an effect at

architectural level is proved here. Again, the 5 seconds no

touch interaction delay helps in distinguishing the fact that

there is no other overhead.

FIGURE 4: EMULATE SWIPES FOR CPU FREQUENCY PROFILING

On an average, the CPU frequency of core 0, 1 and 2 is

between 1 GHz to 1.5 GHz, due to Qualcomm’s in built core

level governor, core 3 is almost never used. On the other hand,

the CPU load is almost 60% during heavy touch interactions.

With similar core level activity.

FIGURE 5: EMULATE SWIPES FOR CPU LOAD PROFILING

D. What About Taps?

It’s very difficult to understand how the user is going

interact with an Android smartphone. There are number of

gestures which are available to user. The only way to

distinguish the difference between these gestures is interaction

time. If the touch is short, most likely the user is engaging for

a tap events, else most likely drag or swipe. Above results

motivated use to look into swipe touch events, but what about

tap? Do we need to take them into consideration or not? To

answer these questions, we carried out similar experiment

exclusively for tap events.

Figure 6 shows the experiment setup, here we opt to

emulate tap using the same native utility, and log data with

same profiler. Here, the frequency of taps for first 20 seconds

are 10 tap inputs per second, and for next 20 seconds, it’s 1 tap

input per second. Total duration of simulation was around 60

seconds. Figure 7 shows the power analysis for tap inputs, and

we do see the effect of these inputs on the battery current

drawn. However, if we compare that against swipe touch

events, then tap have minimal impact. Also, the interrupts

generated compared to swipe events are very less, and

skipping those will annoy user, which we have explained in

detail in later sections.

 FIGURE 6: EMULATE TAP FOR CPU POWER PROFILING

FIGURE 7: EMULATE TAP FOR CPU POWER PROFILING

 To conclude, we observe that swipes are power, CPU
hungry and considering that many of the leading applications
on the Google Play like Facebook, Twitter, Chrome Browser,
and other tools make heavy use of swipe interactions, we got a
strong motivation to take this forward, and analyze the swipe
touch system in depth, and see how they can be processed
more efficiently.

III. Background

Touch devices have been in use since 1990s, and over the

years it has found use in many more hardware devices. During

this same era Linux Kernel started growing, and we saw more

generic implementation of how touch screen work. All

vendors has to do is to write a device driver specific to their

hardware, and then hook it to Linux Input Subsystem [14],

which is further processed by Android Input Subsystem [15]

in case of Android OS or CM OS.

This section helps in understanding how the touch flow

occurs in Nexus 4 which basically runs CM 11.0 OS built on

top of Linux Kernel. Doing this analysis ultimately allowed us

the ability to process the desired touch events, and also helped

in accessing the correct framework that resides within

Android.

A. Type of Inputs:

Smartphones handle different types of input event and to

understand the specific touch input driver we were interested

in, we started looking into different types of input event that

Nexus 4 can handle. Below snippet shows input types that

Nexus 4 (codename: mako) supports, and it also means that

the device driver will be processing all the raw data, which

eventually is going to be thrown on to /dev/input/event2.

Whether it is a tap, swipe or drag, all the events are going to

be handled by this particular device.

 The Input System comprises of two subsystems:

 Linux Input Subsystem

 Android Input Subsystem

B. Linux Input Subsystem:

Now that we have an understanding of the type of input

events that can be handled in Nexus 4, let’s take a look at how

these are processed, and how many interrupts each of the

swipe and tap produce. Linux input subsystem comprises of

three main components:

 Input Drivers: This consists of the native code provided

by the vendors whose hardware is being used. For touch

screen this may come from Synaptics, Atmel etc. This

helps in capturing raw data as soon as user touches the

screen, and transfers them to the next section.

 Input Core: This is built in functionality provided by

Linux Kernel, this specifically understands which type of

touch driver is sending the data, and accordingly helps

convert the raw data to more human readable form, and

calls the correct handler responsible for handling such

inputs.

 Event Handlers: After above decision of where to

transfer the touch data, the final step is to understand

which exact input the data should be given to. In last sub

section, we saw that there are various input devices, to

distinguish between different sub input devices, event

handler is called, and it passed touch event to event2 in

Nexus 4. Figure 8 illustrates the process.

FIGURE 8: LINUX INPUT SUBSYSTEM

 Figure 9 & 10 shows an interesting data that helped create
the base for Interrupt Skipping. Figure 9 shows how many tap
input events are captured and passed by the Linux Input
Subsystem. The important thing here was to understand if we
can do away with any of the inputs for the tap. But we will
explain in later section why we didn’t implement interrupt
skipping for taps.

FIGURE 9: EVENTS WHEN TAP OCCURS

 We did the same analysis for swipe events, and found that
the number of touch events generated during this process are
far more than that of taps. This pushed us into thinking if we
can exploit this feature. Swipe event consists of sync report
that is generated for each step, if an user is doing swipe from
coordinate (x1,y1) to (x2,y2), and the distance between these
is 100, then this 100 will be divide into equal steps. In
nutshell, the swipe is nothing but a continuous tap occurring
so fast that the user can’t perceive this.

shell@mako:/sdcard $ getevent

add device 1: /dev/input/event0

name: "pmic8xxx_pwrkey"

add device 2: /dev/input/event1

name: "keypad_8064"

add device 3: /dev/input/event4

name: "apq8064-tabla-snd-card

Headset Jack"

add device 4: /dev/input/event3

name: "apq8064-tabla-snd-card

Button Jack"

add device 5: /dev/input/event5

name: "hs_detect"

add device 6: /dev/input/event2

name: "touch_dev"

 Figure 10 shows how many swipe input events are
generated and passed on to the next subsystem i.e. Android
Input Subsystem, which captures these inputs and process
them in order to complete the full action on the application
side.

FIGURE 10: EVENTS WHEN SWIPE OCCURS

 Next subsection describes how the Android Input
Subsystem works, it’s written in Java.

C. Android Input Subsystem:

 After the input has been processed by the Linux Input
Subsystem, Android Input Subsystem is called. This system is
always pooling for events at any of the input device:
/dev/input/event*, and as soon as it captures the data there, it
is send for further processing. The Android system is designed
such that it is able to understand the difference gestures for
touch event based upon timing and other details.

 Figure 11, shows the system described in detail by Andrew
S. Hughes [16]. It shows how the native events are captured,
and there on processed as InputReader thread and
InputDispatcher thread. After fully processing based on
various criteria’s like timing, sync report, device ID etc, the
final processed event is dispatched to the frame buffer, where

the action is final taken on the user side, the application. Thus
completing the full cycle of touch event.

FIGURE 11: ANDROID INPUT SUBSYSTEM. IMAGE COURTESY [16]

D. Interrupt Skipping In Input Subsystem:

As established in the last two subsections, the input system

produces lots of events particularly in swipe touches. If we

take a closer look at these input events for swipe, then we see

the possibility of skipping few of them. Doing so will not

allow these to be processed fully on the Android Input

Subsystem side. We can’t opt for interrupt skipping on Linux

Input Subsystem, as we do need some form of input data to

come to a conclusion that whether some of these can be

skipped or not.

Figure 10 presents the number of steps a single swipe takes

to complete the full swipe, what is we started to skip 50% of

these? What if we skip 20%? There is a strong need to

understand these, and that is where the concept we are

introducing of interrupt skipping needs to be tested. For this

we developed algorithmic approach on the Android Input

Subsystem, and thoroughly tested it in order to see how the

system reacts, and whether there is possibility for saving

power. We describer all this in next section.

IV. System Design
Carrying from the previous section, here we describe the

system we have designed, and how that has been incorporated

in the current operating system, and the modified internal

Android Input Subsystem.

A. The Current Model:

Figure 12 shows how the current model handle the inputs,

specifically the touch inputs. All the inputs as received are

processed first by the Linux Input Subsystem, and there on

passed on to the Android Input Subsystem. All these goes on

to affect the power consumption.

FIGURE 12: CURRENT MODEL OF TOUCH PROCESSING

This model doesn’t take into consideration the user. Each

and every user is different, and is able to adopt the system as

per the needs. After looking into the inner working of the

Android Input Subsystem, we decided to modify it as per the

user. The important argument here is that the holistic approach

required to process the system should also be considered. The

next subsection describes how the new model works.

B. The Interrupt Skipping Model:

As stated in the last few sections, we have seen that swipes

are event hungry, and they in turn become power and CPU

hungry. To make them more efficient we need to model the

current subsystem as per the user needs. As of now the

implemented version is not adaptive, but it surely understands

the activities that are being done by the users. Let’s consider

various scenarios:

1. Opening of an application: When a user unlocks the

devices and starts looking through the application he she

wants to open up, he expects that the icon clicked should

respond as fast as possible. Our interrupt skipping model,

takes this into consideration, and allows all the tap events

to process without any hassle.

2. Using the application: After the user has opened the

application, there are many things he she might be able to

do depending upon the application. For emails, first thing

would be to scroll through. Usually, user will scroll

slowly, and since these scroll events are swipes lots of

events will be generated, this is where our model kicks in,

and tries to understand whether the scroll is too slow or

fast. For fast, to keep user satisfied, the model will let go

all the things, but for slow swipes, since the user expects

page to move slowly, it will start dropping events. If the

user changes back to editing mode while in the email

application, the model is still active, but won’t skip any

events as while editing any test, user expects things to

move fast, and there on keeping user satisfaction high.

3. Switching to another application: When the user

switches to other application, model may or may not kick

in depending upon the action. If the user is scrolling

slowly looking for another app, he she may feel the slight

change in response, but as per our rigorous test these are

negligible.

4. Closing the application: The user will stop the

application, and there on close the screen. While he is

doing this, only for the first activity the model will jump

in, for the second one, even though it’s an input event, our

model ignores it, as this is not something we skip, else the

user will be annoyed beyond extent.

Figure 13 shows our interrupt skipping models, and the

working described above is represented there too. This model

is capable of working against any application because of the

implementation at the system side. Also, if we look at the

application like Facebook, Google+, Twitter, LinkedIn, or

event any gaming application, swipes are used more that 50%

of the time to engage with these applications. Considering this,

our model adds a significant argument of using it across such

apps.

FIGURE 13: INTERRUPT SKIPPING MODEL OF TOUCH PROCESSING

C. Incorporating Interrupt Skipping Model:

The system designed can be easily applied to any Android

smartphone. Since, this process is happening at the system

level, it doesn’t matter which platform the Android OS is

running on. Our model can be easily attached to the current

Android Input Subsystem, and can be tested across devices.

We are also able to decide the percentage of swipe events we

wish to skip, this gives the model more flexibility to adapt and

decide. We have carried extensive analysis for this, and we

describe the findings of our power analysis in next few

sections.

V. Experimental Setup

In this section, we describe the experimental setup used to
test interrupt skipping. This experimental setup was used to
gather power performance with and without interrupt
skipping. At the time of writing this technical report, we were
in process to reach out to users in order to carry out user study.

For this experiment to collect and present power results,
we concentrated only on single heavily used application, the
Google Chrome Browser. This was decided because of the
heavy use of browsers on smartphones, and also that the
Chrome Browser is very reliable when it comes to parallel
processing, and makes good uses of multithreading. We
simulated swipes events with the frequency of 1 swipe per
second to make sure that our model is used when we are
testing it. We will be able to test it fully with any frequency of
touch during the user study. The power profiling setup
consists:

 LG Nexus 4:
a. CyanogenMod 11.0 a.k.a Android Kitkat 4.4
b. Kernel 3.4.0
c. CPU: 1.512 GHz Quad Core Krait
d. SoC: Qualcomm Snapdragon S4 Pro APQ8064

 Trepn Profiler to gather power data.

 Google Chrome browser application.

 Orangutan to emulate swipes.

Since interrupt skipping is capable of skipping any

percentage of swipe events, we collected the power data for
40%, 50%, 60%, 70%, and 80% drop of swipe events.

VI. Results
In this section, we describe and compare the results for

current input model stacked against the implemented interrupt

skipping. As said in last section, we vary the number of swipe

events that are being dropped, and then run the power analysis

to understand the effect on the battery current. Figure 14

shows how the current model works when only 40% of the

swipe events are skipped under interrupt skipping model.

There is significant drop in battery current drawn. We also

take into consideration different brightness level, as these are

important technical aspects which are related to touchscreen.

FIGURE 14: CURRENT MODEL vs 40% INTERRUPT SKIPPING MODEL

FIGURE 15: CURRENT MODEL vs 60% INTERRUPT SKIPPING MODEL

 Figure 15 shows the same analysis which has been carried
out with only 60% of swipes being dropped. We see consistent
power savings, when the interrupt skipping is in place. We
again observe similar activity for 70% of the swipe events
dropped as shown in figure 16.

FIGURE 16: CURRENT MODEL vs 70% INTERRUPT SKIPPING MODEL

FIGURE 17: CURRENT MODEL vs 80% INTERRUPT SKIPPING MODEL

 We do have one result where the interrupt skipping didn’t
had any effect. Figure 17 shows that for 80% skipping, the
model is missing out on skipping many swipe events, and that
lead to less impact on the power savings. We come to the
conclusion that the best case scenario to skip interrupts is with
50%, where we see satisfactory power savings of around 5%
as shown in Figure 18.

FIGURE 18: CURRENT MODEL vs 50% INTERRUPT SKIPPING MODEL

 In figure 19, we compare all the varying interrupt skipping
against the original model, and see impact of the new
proposed model.

FIGURE 19: CURRENT MODEL vs VARYING INTERRUPT SKIPPING MODEL

VII. Related Work
Since, Android OS started taking over the smartphone

domain, there has been surge in research activities related to

power efficiency for Android smartphones. Research has been

carried out on full analysis of power consumption in a

smartphone [17]. Such study show that here is need to make

smartphones more efficient, and less power hungry. The best

of best smartphones don’t last more than a day, and with less

improvement in battery technology, there is need to put

efficient system architecture. Our approach of implementing

novel touch interrupt skipping is the first one to the best of our

knowledge. The nearest research on touch efficiency [7]

doesn’t even take into consideration the full system and don’t

event provide future approach. Few research has targeted the

CPU governor to make use of user perceived response time

[18], but these framework are targeted towards power

management, rather than efficient touch management.

All the power related research on smartphones haven’t

taken the approach we took i.e. the efficient touch processing,

and that has been our focus in this research.

VIII. Conclusion
After running power analysis for varying touch interrupt

skipping we come to the conclusion that there is significant
need to improve the current touch processing system. Our
approach shows a path of how skipping the interrupts will lead
to better power efficiency without impacting the working of
the smartphones. We are able to shown an improvement of
around 5%, and that can be significantly improved further if
tested in a real environment.

Future smartphones not only have to be smart in terms of
processing, they need to be smart in conserving power too.
Upcoming smartphones are going to evolve around Linux
Kernel, and Android OS, which also raises the question to go
through working of legacy framework, and understand how
that can help improve the efficiency of a smartphone.

Interrupt skipping for reducing power consumption can
also be extended to other internal frameworks in Android
where lots of interrupts are generated, and it would be
interesting to understand whether all of these need to be
processed, and how much impact they have at architectural
level.

IX. FUTURE WORK
This study has established the fact that touch events can be

skipped to gain better power consumption. Our main target
now is to understand, and prove that fast is not always better.
To do this, we need to go to the user, and understand what
they feel about the implemented model, and how it can be
improved further.

It would be interesting to look into more details about
similar simulation being carried out on an architectural
simulator like gem5, and whether there is scope of improving
the framework further depending upon the data gathered for
the architecture simulated. Also, same study can be extended
to other Android OS version and also to different Instruction
Set Architectures.

This will allow computer architects and system designers
to study the effects of touch inputs across different operating
systems and future mobile processor architectures.

X. Acknowledgment
We would like to thank Matthew Schuchhardt for his

continuous guidance on Android system. Prof. Peter Dinda for
important advice on system level architecture. Emphatic
Systems Project and Intel group for their valuable inputs.

Android phone images used in figure 1, 3, 6, 12 and 13 are
provided by Google Inc.’s Android Open Source Project under
Creative Commons Attribution 2.5.

XI. References
[1] Android Operating System: http://www.android.com/
[2] Google I/O by the numbers: 900 million Android activations:

http://www.zdnet.com/google-io-by-the-numbers-900-million-android-
activations-7000015432/

http://www.zdnet.com/google-io-by-the-numbers-900-million-android-activations-7000015432/
http://www.zdnet.com/google-io-by-the-numbers-900-million-android-activations-7000015432/

[3] ARM: http://www.arm.com/

[4] A. Ng, J. Lepinski, and D. Wigdor, “Designing for low-latency direct-
touch input,” Proc. 25th …, pp. 453–464, 2012.

[5] H. Xia, R. Jota, B. Mccanny, Z. Yu, C. Forlines, K. Singh, and D.
Wigdor, “Zero - Latency Tapping : Using Hover Information to Predict
Touch Locations and Eliminate Touchdown Latency,” pp. 205–214,
2014.

[6] R. Jota, A. Ng, P. Dietz, and D. Wigdor, “How fast is fast enough?,”
Proc. SIGCHI Conf. Hum. Factors Comput. Syst. - CHI ’13, no. 1, p.
2291, 2013.

[7] A. W. Min, K. Han, D. Hong, and Y. Park, “Adaptive Touch Sampling
for Energy-Efficient Mobile Platforms.”

[8] Cyanogen Mod: http://www.cyanogenmod.org/

[9] Nexus 4: http://www.google.com/intl/ALL/nexus/4/

[10] Trepn: https://developer.qualcomm.com/mobile-development/increase-
app-performance/trepn-profiler

[11] Chrome Browser: http://www.google.com/chrome/

[12] Orangutan: https://github.com/wlach/orangutan
[13] Input:

http://developer.android.com/reference/android/view/KeyEvent.html

[14] Linux Input Subsystem:
https://www.kernel.org/doc/Documentation/input/input-programming.txt

[15] Android Input Subsystem:
https://source.android.com/devices/input/overview.html

[16] A. Hughes, “Active Pen Input and the Android Input Framework,”
Thesis, no. June, 2011.

[17] A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone,” Proc. 2010 USENIX Conf. USENIX Annu. Tech. Conf.,
pp. 21–21, 2010.

[18] W. Song, N. Sung, B.-G. Chun, and J. Kim, “Reducing energy
consumption of smartphones using user-perceived response time
analysis,” Proc. 15th Work. Mob. Comput. Syst. Appl. - HotMobile ’14,
pp. 1–6, 2014.

http://www.android.com/

