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Abstract — Touch based smart phones and tablets have 

increased rapidly and have become primary mode of computing 

and communication. Users have to perform various types of 

touch inputs on these devices to interact with applications and 

manufacturers are always looking to improve the response time 

to satisfy users. However, performing touch gestures and making 

it more responsive has significant effect both on device battery 

and the microarchitecture. It is therefore important for computer 

architects and system designers to take into consideration the 

underlying effects of these touch gestures and user interactions at 

architectural level. Also, it’s important to understand how 

efficient the touch architecture in today’s smartphones are, and if 

there is any possibility to improve their efficiency.  

Therefore, there is a need to put forward ways to study these 

effects, and this technical report takes a look at touch 

interactions, their underlying architecture, and how our 

proposed implemented system helps improve efficiency at the 

system level. We call this new implementation, Interrupt Skipping. 

Keywords— touch inputs; user interaction; android; 

smartphones 

I.  Introduction  
Touch based devices, mainly smart phones and tablets, 

have seen rapid growth both in terms of use and technological 
development. Android OS [1] is leading all the way as 
preferred OS for mobile devices, with around billion 
activations and 50 billion of application installs [2]. In terms 
of hardware, ARM [3] is undoubtedly the leader in mobile 
devices and OEM’s prefer to have ARM on the SoC’s they 
built. Android is operated mainly using touch screen and this 
requires heavy user interactions with the help of touch inputs. 

This presents an opportunity and need to study the effects 
of these interactions at system and hardware level. Same time, 
it is also very important to understand the how much more 
efficient these touch interactions can be. Even a few 
percentage of drop in battery current drawn from such task, 
which is mainly handle by drivers, can help improve 
efficiency of future smartphones. Thus, it’s important to 
understand how touch interaction occur at the software-
hardware level, and whether skipping these helps improve 
power consumption while keeping the user satisfied.  

Touch devices have become an integral part of day to day 
life, and this has attracted research community’s attention, and 

many groups have started looking into the details of how they 
can minimize the delay associated with every single touch. So 
far, most of them have concentrated on improving the 
response time, without much looking into the efficiency [4] 
[5]. Some of the study have also looked into the need of how 
fast the touch interaction should be [6]. Most recently, 
Alexander W. Min et al [7], came up with an adaptive touch 
sampling for mobile platforms. However, all these study lacks 
the real implementation, because they provide results based on 
bare devices, which don’t run any operation system, 
applications or even use a SoC. 

Currently, to the best of our knowledge, there hasn’t been 
any study that looked into how touch processing can be 
handled in a very different manner, which in turn results in 
better efficient touch system. Thus, there is a need to put 
forward such implementation, and how that can make future 
smartphones less touch power hungry. 

In this report, we show how interrupt which occurs during 
each touch interactions can be skipped without user perceiving 
any difference. Our implementation uses Android OS (AOSP), 
specifically we make use of CyanogenMod (CM) OS 11.0 [8] 
which is equivalent of Android KitKat 4.4. The reason to opt 
for a forked version of AOSP is due to the faster adoption both 
by hobbyist and OEM’s. Also, since the underlying 
architecture is built on top of Linux Kernel, it gives us the 
same infrastructure to test with better build environment 
compared to AOSP. To validate our model, we make use of a 
widely popular Nexus 4 [9], and industry grade profiler Trepn 
[10]. 

In summary, this report put forwards: 

 We show how current touch input systems in 
smartphones are power and CPU hungry. 

 We developed, implemented, and tested a new 
concept called Interrupt Skipping, which helps in 
achieving better touch power efficiency. 

 The rest of this report is organized as follows. Section II 
describes the motivation to this research study on touch 
interactions. Section III shows how current underlying 
architecture works both at hardware and software level. 
Section IV describes the system developed. Section V talks 
about the experimental setups. Section VI shows the results 
we get from out implemented system. In section VII we share 



related work, and conclude with conclusion and future work in 
section VIII and IX respectively. 

II. Motivation 
In this section, we describe the experiments we carried out 

in order to get power, CPU frequency, CPU load related touch 

interaction data. This in turn motivated us to look deeper into 

the touch architecture, and helped us in deciding how touches 

can be made more efficient. 

A. The Setup: 

 

The experiment setup for this uses swipe touches. To 

understand the power consumption between no touch 

interaction, heavy touch interaction, and low touch interaction, 

we simulate emulated swipe script for total of 80 seconds with 

Google Chrome Browser [11] loaded with a WiKi page. We 

make use of an open native utility called Orangutan [12], 

which allowed us to emulate near perfect touch events. We do 

away with using Android inbuilt utility input [13] to emulate 

same, due to the overhead it adds being written in Java. First 5 

seconds, we don’t emulate anything, then for next 20 seconds 

we emulate very fast 8 swipes per second touches. Again, we 

put the system to do away with emulating touch events for 5 

seconds, with next 20 seconds emulating low 1 swipe per 

second before a 5 second delay, and then fast 8 swipes per 

second for 20 seconds. Finally, ending with 5 second of no 

interaction. 

B. Power Hungry: 

 
We carried out the explained setup to look into how 

change in frequency of swipe touch during a period of time on 
a Chrome Browser affects the battery current drawn.  

Figure 1 shows the experimental set up for power analysis. 
To capture the battery current drawn, as noted above we make 
use of Trepn Profiler. Trepn being developed and distributed 
by Qualcomm makes for a good profiler due to the SoC in 
Nexus 4 is developed by Qualcomm only.  

 

 

 

FIGURE 1: EMULATE SWIPES FOR POWER PROFILING 

  The data gathered during the analysis is shown in Figure 
2. The results we got were very motivating, it clearly shows 

that with increase in touch interaction on an application in 
focus, results in tremendous amount of battery current being 
drawn. Since we make sure the screen brightness is lowest, all 
other wireless communication are turned off, and the data we 
got is near accurate. The 5 seconds of delay, where no touch 
interaction is happening, helps in showing the real difference. 

  

 

FIGURE 2: BATTERY CURRENT DRAWN FOR SWIPES 

 

 On an average, we see the difference of about 5% in 
battery current being drawn when there is no touch interaction, 
and when there is. We also note that between fast swipes of 8 
swipes per second, and slow swipes of 1 swipe per second, 
there is around 2% of difference. 

C. CPU Hungry: 

 

To get more in depth understanding we also run the similar 

experiment to see how CPU frequency and CPU Load is 

affected with touch interactions. Nexus 4’s SoC is a quad core 

one, and it honors core level voltage and frequency scaling. 

We wanted to see how different core react to our emulated 

touch swipes. For this experiment, we kept the CPU governor 

to on demand, this helps in giving the best performance and 

near accurate data. We again make use of same profiler we 

used for power analysis. Figure 3 illustrates the set up. 

 

 
 

FIGURE 3: EMULATE SWIPES FOR CPU PROFILING 

 

Figure 4 and 5 tells the similar story as told by Figure 2, 

i.e., touch interaction, specifically swipes affect CPU heavily, 

and thus the fact that touch interaction do have an effect at 

architectural level is proved here. Again, the 5 seconds no 



touch interaction delay helps in distinguishing the fact that 

there is no other overhead. 

 

 
 

FIGURE 4: EMULATE SWIPES FOR CPU FREQUENCY PROFILING 

On an average, the CPU frequency of core 0, 1 and 2 is 

between 1 GHz to 1.5 GHz, due to Qualcomm’s in built core 

level governor, core 3 is almost never used. On the other hand, 

the CPU load is almost 60% during heavy touch interactions. 

With similar core level activity. 

 

 
 

FIGURE 5: EMULATE SWIPES FOR CPU LOAD PROFILING 

D. What About Taps? 

 

It’s very difficult to understand how the user is going 

interact with an Android smartphone. There are number of 

gestures which are available to user. The only way to 

distinguish the difference between these gestures is interaction 

time. If the touch is short, most likely the user is engaging for 

a tap events, else most likely drag or swipe. Above results 

motivated use to look into swipe touch events, but what about 

tap? Do we need to take them into consideration or not? To 

answer these questions, we carried out similar experiment 

exclusively for tap events. 

 

Figure 6 shows the experiment setup, here we opt to 

emulate tap using the same native utility, and log data with 

same profiler. Here, the frequency of taps for first 20 seconds 

are 10 tap inputs per second, and for next 20 seconds, it’s 1 tap 

input per second. Total duration of simulation was around 60 

seconds. Figure 7 shows the power analysis for tap inputs, and 

we do see the effect of these inputs on the battery current 

drawn. However, if we compare that against swipe touch 

events, then tap have minimal impact. Also, the interrupts 

generated compared to swipe events are very less, and 

skipping those will annoy user, which we have explained in 

detail in later sections. 

 

 
 

 FIGURE 6: EMULATE TAP FOR CPU POWER PROFILING 

 
 

 

 

FIGURE 7: EMULATE TAP FOR CPU POWER PROFILING 

  

 To conclude, we observe that swipes are power, CPU 
hungry and considering that many of the leading applications 
on the Google Play like Facebook, Twitter, Chrome Browser, 
and other tools make heavy use of swipe interactions, we got a 
strong motivation to take this forward, and analyze the swipe 
touch system in depth, and see how they can be processed 
more efficiently.  

III. Background 
 

Touch devices have been in use since 1990s, and over the 

years it has found use in many more hardware devices. During 

this same era Linux Kernel started growing, and we saw more 

generic implementation of how touch screen work. All 

vendors has to do is to write a device driver specific to their 

hardware, and then hook it to Linux Input Subsystem [14], 

which is further processed by Android Input Subsystem [15] 

in case of Android OS or CM OS.  

 

This section helps in understanding how the touch flow 

occurs in Nexus 4 which basically runs CM 11.0 OS built on 

top of Linux Kernel. Doing this analysis ultimately allowed us 

the ability to process the desired touch events, and also helped 



in accessing the correct framework that resides within 

Android. 

A. Type of Inputs: 

 

Smartphones handle different types of input event and to 

understand the specific touch input driver we were interested 

in, we started looking into different types of input event that 

Nexus 4 can handle. Below snippet shows input types that 

Nexus 4 (codename: mako) supports, and it also means that 

the device driver will be processing all the raw data, which 

eventually is going to be thrown on to /dev/input/event2. 

Whether it is a tap, swipe or drag, all the events are going to 

be handled by this particular device.  

 The Input System comprises of two subsystems: 

 Linux Input Subsystem 

 Android Input Subsystem 

B. Linux Input Subsystem: 

 

Now that we have an understanding of the type of input 

events that can be handled in Nexus 4, let’s take a look at how 

these are processed, and how many interrupts each of the 

swipe and tap produce. Linux input subsystem comprises of 

three main components: 

 

 Input Drivers: This consists of the native code provided 

by the vendors whose hardware is being used. For touch 

screen this may come from Synaptics, Atmel etc. This 

helps in capturing raw data as soon as user touches the 

screen, and transfers them to the next section. 

 

 Input Core: This is built in functionality provided by 

Linux Kernel, this specifically understands which type of 

touch driver is sending the data, and accordingly helps 

convert the raw data to more human readable form, and 

calls the correct handler responsible for handling such 

inputs. 

 Event Handlers: After above decision of where to 

transfer the touch data, the final step is to understand 

which exact input the data should be given to. In last sub 

section, we saw that there are various input devices, to 

distinguish between different sub input devices, event 

handler is called, and it passed touch event to event2 in 

Nexus 4. Figure 8 illustrates the process. 

 

 
 

FIGURE 8: LINUX INPUT SUBSYSTEM 

 Figure 9 & 10 shows an interesting data that helped create 
the base for Interrupt Skipping. Figure 9 shows how many tap 
input events are captured and passed by the Linux Input 
Subsystem. The important thing here was to understand if we 
can do away with any of the inputs for the tap. But we will 
explain in later section why we didn’t implement interrupt 
skipping for taps. 

 

FIGURE 9: EVENTS WHEN TAP OCCURS 

 

 We did the same analysis for swipe events, and found that 
the number of touch events generated during this process are 
far more than that of taps. This pushed us into thinking if we 
can exploit this feature. Swipe event consists of sync report 
that is generated for each step, if an user is doing swipe from 
coordinate (x1,y1) to (x2,y2), and the distance between these 
is 100, then this 100 will be divide into equal steps. In 
nutshell, the swipe is nothing but a continuous tap occurring 
so fast that the user can’t perceive this.  

shell@mako:/sdcard $ getevent 

add device 1:  /dev/input/event0 

name:     "pmic8xxx_pwrkey" 

add device 2: /dev/input/event1 

name:     "keypad_8064" 

add device 3: /dev/input/event4 

name:     "apq8064-tabla-snd-card 

Headset Jack" 

add device 4: /dev/input/event3 

name:     "apq8064-tabla-snd-card 

Button Jack" 

add device 5: /dev/input/event5 

name:     "hs_detect" 

add device 6: /dev/input/event2 

name:     "touch_dev" 



 Figure 10 shows how many swipe input events are 
generated and passed on to the next subsystem i.e. Android 
Input Subsystem, which captures these inputs and process 
them in order to complete the full action on the application 
side. 

 

FIGURE 10: EVENTS WHEN SWIPE OCCURS 

 Next subsection describes how the Android Input 
Subsystem works, it’s written in Java. 

C. Android Input Subsystem: 

 

 After the input has been processed by the Linux Input 
Subsystem, Android Input Subsystem is called. This system is 
always pooling for events at any of the input device: 
/dev/input/event*, and as soon as it captures the data there, it 
is send for further processing. The Android system is designed 
such that it is able to understand the difference gestures for 
touch event based upon timing and other details.  

 Figure 11, shows the system described in detail by Andrew 
S. Hughes [16]. It shows how the native events are captured, 
and there on processed as InputReader thread and 
InputDispatcher thread. After fully processing based on 
various criteria’s like timing, sync report, device ID etc, the 
final processed event is dispatched to the frame buffer, where 

the action is final taken on the user side, the application. Thus 
completing the full cycle of touch event. 

 

FIGURE 11: ANDROID INPUT SUBSYSTEM. IMAGE COURTESY [16] 

D. Interrupt Skipping In Input Subsystem: 

 

As established in the last two subsections, the input system 

produces lots of events particularly in swipe touches. If we 

take a closer look at these input events for swipe, then we see 

the possibility of skipping few of them. Doing so will not 

allow these to be processed fully on the Android Input 

Subsystem side. We can’t opt for interrupt skipping on Linux 

Input Subsystem, as we do need some form of input data to 

come to a conclusion that whether some of these can be 

skipped or not. 

 

Figure 10 presents the number of steps a single swipe takes 

to complete the full swipe, what is we started to skip 50% of 

these? What if we skip 20%? There is a strong need to 

understand these, and that is where the concept we are 

introducing of interrupt skipping needs to be tested. For this 

we developed algorithmic approach on the Android Input 

Subsystem, and thoroughly tested it in order to see how the 

system reacts, and whether there is possibility for saving 

power. We describer all this in next section. 

 

IV. System Design 
Carrying from the previous section, here we describe the 

system we have designed, and how that has been incorporated 

in the current operating system, and the modified internal 

Android Input Subsystem. 

 

A. The Current Model: 

 

Figure 12 shows how the current model handle the inputs, 

specifically the touch inputs. All the inputs as received are 

processed first by the Linux Input Subsystem, and there on 



passed on to the Android Input Subsystem. All these goes on 

to affect the power consumption. 

 

 

 
 

FIGURE 12: CURRENT MODEL OF TOUCH PROCESSING 

This model doesn’t take into consideration the user. Each 

and every user is different, and is able to adopt the system as 

per the needs. After looking into the inner working of the 

Android Input Subsystem, we decided to modify it as per the 

user. The important argument here is that the holistic approach 

required to process the system should also be considered. The 

next subsection describes how the new model works. 

  

B. The Interrupt Skipping Model: 

 

As stated in the last few sections, we have seen that swipes 

are event hungry, and they in turn become power and CPU 

hungry. To make them more efficient we need to model the 

current subsystem as per the user needs. As of now the 

implemented version is not adaptive, but it surely understands 

the activities that are being done by the users. Let’s consider 

various scenarios: 

 

1. Opening of an application:  When a user unlocks the 

devices and starts looking through the application he she 

wants to open up, he expects that the icon clicked should 

respond as fast as possible. Our interrupt skipping model, 

takes this into consideration, and allows all the tap events 

to process without any hassle. 

 

2. Using the application: After the user has opened the 

application, there are many things he she might be able to 

do depending upon the application. For emails, first thing 

would be to scroll through. Usually, user will scroll 

slowly, and since these scroll events are swipes lots of 

events will be generated, this is where our model kicks in, 

and tries to understand whether the scroll is too slow or 

fast. For fast, to keep user satisfied, the model will let go 

all the things, but for slow swipes, since the user expects 

page to move slowly, it will start dropping events. If the 

user changes back to editing mode while in the email 

application, the model is still active, but won’t skip any 

events as while editing any test, user expects things to 

move fast, and there on keeping user satisfaction high. 

 

3. Switching to another application: When the user 

switches to other application, model may or may not kick 

in depending upon the action. If the user is scrolling 

slowly looking for another app, he she may feel the slight 

change in response, but as per our rigorous test these are 

negligible. 

 

4. Closing the application: The user will stop the 

application, and there on close the screen. While he is 

doing this, only for the first activity the model will jump 

in, for the second one, even though it’s an input event, our 

model ignores it, as this is not something we skip, else the 

user will be annoyed beyond extent. 

 

Figure 13 shows our interrupt skipping models, and the 

working described above is represented there too.  This model 

is capable of working against any application because of the 

implementation at the system side. Also, if we look at the 

application like Facebook, Google+, Twitter, LinkedIn, or 

event any gaming application, swipes are used more that 50% 

of the time to engage with these applications. Considering this, 

our model adds a significant argument of using it across such 

apps. 

 

 
 

 
FIGURE 13: INTERRUPT SKIPPING MODEL OF TOUCH PROCESSING 

C. Incorporating Interrupt Skipping Model: 

 

The system designed can be easily applied to any Android 

smartphone. Since, this process is happening at the system 

level, it doesn’t matter which platform the Android OS is 

running on. Our model can be easily attached to the current 

Android Input Subsystem, and can be tested across devices. 

We are also able to decide the percentage of swipe events we 

wish to skip, this gives the model more flexibility to adapt and 

decide. We have carried extensive analysis for this, and we 

describe the findings of our power analysis in next few 

sections. 



V. Experimental Setup 
 

In this section, we describe the experimental setup used to 
test interrupt skipping. This experimental setup was used to 
gather power performance with and without interrupt 
skipping. At the time of writing this technical report, we were 
in process to reach out to users in order to carry out user study. 

For this experiment to collect and present power results, 
we concentrated only on single heavily used application, the 
Google Chrome Browser. This was decided because of the 
heavy use of browsers on smartphones, and also that the 
Chrome Browser is very reliable when it comes to parallel 
processing, and makes good uses of multithreading. We 
simulated swipes events with the frequency of 1 swipe per 
second to make sure that our model is used when we are 
testing it. We will be able to test it fully with any frequency of 
touch during the user study. The power profiling setup 
consists: 

 LG Nexus 4: 
a. CyanogenMod 11.0 a.k.a Android Kitkat 4.4 
b. Kernel 3.4.0 
c. CPU: 1.512 GHz Quad Core Krait 
d. SoC: Qualcomm Snapdragon S4 Pro APQ8064 

 Trepn Profiler to gather power data. 

 Google Chrome browser application. 

 Orangutan to emulate swipes. 
 
Since interrupt skipping is capable of skipping any 

percentage of swipe events, we collected the power data for 
40%, 50%, 60%, 70%, and 80% drop of swipe events. 

VI. Results 
In this section, we describe and compare the results for 

current input model stacked against the implemented interrupt 

skipping. As said in last section, we vary the number of swipe 

events that are being dropped, and then run the power analysis 

to understand the effect on the battery current. Figure 14 

shows how the current model works when only 40% of the 

swipe events are skipped under interrupt skipping model. 

There is significant drop in battery current drawn. We also 

take into consideration different brightness level, as these are 

important technical aspects which are related to touchscreen.  

 

 
 

FIGURE 14: CURRENT MODEL vs 40% INTERRUPT SKIPPING MODEL 

 

FIGURE 15: CURRENT MODEL vs 60% INTERRUPT SKIPPING MODEL 

 

 Figure 15 shows the same analysis which has been carried 
out with only 60% of swipes being dropped. We see consistent 
power savings, when the interrupt skipping is in place. We 
again observe similar activity for 70% of the swipe events 
dropped as shown in figure 16. 

 

 
 
FIGURE 16: CURRENT MODEL vs 70% INTERRUPT SKIPPING MODEL 

 

 

FIGURE 17: CURRENT MODEL vs 80% INTERRUPT SKIPPING MODEL 

 

 We do have one result where the interrupt skipping didn’t 
had any effect. Figure 17 shows that for 80% skipping, the 
model is missing out on skipping many swipe events, and that 
lead to less impact on the power savings. We come to the 
conclusion that the best case scenario to skip interrupts is with 
50%, where we see satisfactory power savings of around 5% 
as shown in Figure 18. 



 
 
FIGURE 18: CURRENT MODEL vs 50% INTERRUPT SKIPPING MODEL 

 In figure 19, we compare all the varying interrupt skipping 
against the original model, and see impact of the new 
proposed model. 
 

 
 

FIGURE 19: CURRENT MODEL vs VARYING INTERRUPT SKIPPING MODEL 

 

VII. Related Work 
Since, Android OS started taking over the smartphone 

domain, there has been surge in research activities related to 

power efficiency for Android smartphones. Research has been 

carried out on full analysis of power consumption in a 

smartphone [17]. Such study show that here is need to make 

smartphones more efficient, and less power hungry. The best 

of best smartphones don’t last more than a day, and with less 

improvement in battery technology, there is need to put 

efficient system architecture. Our approach of implementing 

novel touch interrupt skipping is the first one to the best of our 

knowledge. The nearest research on touch efficiency [7] 

doesn’t even take into consideration the full system and don’t 

event provide future approach. Few research has targeted the 

CPU governor to make use of user perceived response time 

[18], but these framework are targeted towards power 

management, rather than efficient touch management. 

 

All the power related research on smartphones haven’t 

taken the approach we took i.e. the efficient touch processing, 

and that has been our focus in this research. 

VIII. Conclusion 
After running power analysis for varying touch interrupt 

skipping we come to the conclusion that there is significant 
need to improve the current touch processing system. Our 
approach shows a path of how skipping the interrupts will lead 
to better power efficiency without impacting the working of 
the smartphones. We are able to shown an improvement of 
around 5%, and that can be significantly improved further if 
tested in a real environment. 

Future smartphones not only have to be smart in terms of 
processing, they need to be smart in conserving power too. 
Upcoming smartphones are going to evolve around Linux 
Kernel, and Android OS, which also raises the question to go 
through working of legacy framework, and understand how 
that can help improve the efficiency of a smartphone. 

Interrupt skipping for reducing power consumption can 
also be extended to other internal frameworks in Android 
where lots of interrupts are generated, and it would be 
interesting to understand whether all of these need to be 
processed, and how much impact they have at architectural 
level. 

IX. FUTURE WORK 
This study has established the fact that touch events can be 

skipped to gain better power consumption. Our main target 
now is to understand, and prove that fast is not always better. 
To do this, we need to go to the user, and understand what 
they feel about the implemented model, and how it can be 
improved further.  

It would be interesting to look into more details about 
similar simulation being carried out on an architectural 
simulator like gem5, and whether there is scope of improving 
the framework further depending upon the data gathered for 
the architecture simulated. Also, same study can be extended 
to other Android OS version and also to different Instruction 
Set Architectures.   

This will allow computer architects and system designers 
to study the effects of touch inputs across different operating 
systems and future mobile processor architectures. 
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